
Mechanics and Mechanical Engineering
Vol. 22, No. 4 (2018) 1223–1238
c© Technical University of Lodz

Kinematic and Dynamic Analysis for a New MacPherson Strut
Suspension System

S. Dehbari, J. Marzbanrad

Vehicle Dynamical Systems Research Laboratory, School of Automotive Engineering
Iran University of Science and Technology, Tehran, Iran
e-mail: dehbari@alumni.iust.ac.ir; marzban@iust.ac.ir

Received (21 November 2017)
Revised (11 March 2018)

Accepted (10 September 2018)

The present paper undertakes kinematic and dynamic analysis of front suspension sys-
tem. The investigated model is a full-scale Macpherson which is a multibody system.
Two degree of freedom model is considered here to illustrate the vertical displacement
of sprung mass and unsprung mass with using displacement matrix. Ride and handling
parameters including displacement of sprung and unsprung masses, camber/caster an-
gle, and track changes are derived from the relationships. Moreover, geometrical model
and equations are validated by Adams/Car software. The kinematic and dynamic re-
sults have been compared in both analytical and numerical outputs for verification. The
proposed analytical model shows less than 5% differences with a complicated multibody
model.
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1. Introduction

Suspension system is composed of a set of links connecting wheels to the car body.
The main duties of the suspension system are isolated car body from road input
and keeping wheels on appropriate position. Without suspension system, car body
moves drastically and parts of the car will shortly fail due to the shocks imposed
by road.

Suspension system effects on ride and vertical response. The primary functions
of suspension system are providing vertical compliance and maintaining the wheels
in the proper steer and camber attitudes to the road surface [1]. This latter function,
which is related to car handling, depends on the type of suspension system its
geometry.

The McPherson strut is a very popular mechanism for independent front suspen-
sion of small and mid-size cars. Fig. 1 illustrates a McPherson strut suspension. The
McPherson strut, also called the Chapman strut, was invented by Earl McPherson
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in the 1940’s. It was first introduced on the 1949 Ford Vedette, and also adopted in
the 1951 Ford Consul, and then become one of the dominating suspension systems
because it’s compactness and has a low cost [2].

Of the weak points in this system, one can refer to its poor handling compared
to other models such as double wishbone suspension system.

Figure 1 McPherson Suspension System

MacPherson suspension system composed of control arm, strut, knuckle, and
connections. This suspension system is attached to the car frame via the control
arm at the bottom of the system. This arm is connected to the knuckle via a ball
joint. As can be seen on the Fig. 1, left rod of the knuckle is to the steering arm.
Finally, the center of mechanism is connected to the wheel assembly. Upper part of
the knuckle is where strut assembly is mounted. Strut is composed of spring and
damper and bears the weight of the car.

So far numerous researches have been performed to analyse the performance
of MacPherson suspension system with conventical two-degree of freedom (DOF).
Sharma et al. used a two-DOF model to analyze the ride comfort with only spring,
damper and tire stiffness [3]. Two-DOF model was also used to optimize of sliding
mode control for a vehicle suspension system [4]. In research of Marzbanrad and
Zahabi active control of a quarter-car vehicle model is investigated according to
Two-DOF model [5]. Furthermore, this model has been used to analyze semi-active
suspension systems. Chi et al. used a two-DOF model for design optimization of
vehicle suspensions [6]. Finally, the conventional two-DOF model was used for ex-
perimental analysis [7]. Despite its good capabilities for investigating ride comfort,
it cannot analyze many suspension system related parameters such as camber/caster
angle of the car.

However, some researchers have considered two-dimension (2D) model of Mac-
Pherson suspension system, but the relationships of parameters have not been thor-
oughly discussed. In the papers of Fallah et al. and Hurel et al., 2D model of the
suspension system and its components is investigated [8,9]. These models calculate
many of the suspension system’s parameters, such as camber and king-pin angles,
vertical wheel displacements, sprung mass, and track. 2D models have been also
used to simulate semi-active suspension systems for ride control [10].

There are rare researches with three-dimensional suspension system model. Man-
taras et al. used a 5-DOF 3D model [11]. In this article, suspension system with
along steering system were simulated though, this model has complicated equations



S. Dehbari, J. Marzbanrad 1225

without calculation main parameters like track changes.

Moreover, in some researches on suspension system, just structure of one part
of suspension is investigated. Mark et al. optimized arm control of a suspension
system [12]. In his paper, dynamics and kinematics are ignored and applied forces
on control arm and its response are considered.

Proper design of the suspension system plays an essential role in achieving opti-
mal performance because ride and handling are compromising. In other words, one
tends to be deteriorated as the other one is being improved. Therefore, in order to
properly design a suspension system, one should consider its precise mathematical
model. Since some of the behaviors of a suspension system, such as camber angle,
depend on instantaneous geometry of the arms in the suspension system, to inquir-
ing further details, researcher should use a model which includes all components of
the system. Due to suspension system is a multi-body system and exhibits non-
linear behavior, the considered mathematical model shall be capable of correctly
predicting the behavior of the suspension system. Multibody system simulation
approach is a popular method of investigation of suspension system [13].

The used parameters in this research have been derived from Dacia Logan plat-
form. The model is plotted according to exact dimensions and can analysis both
kinematic parameters including camber and caster angles and track changes and
also dynamic parameters like displacement imposed to car masses by the road.

The paper is arranged as follows. Section 1 presents the main idea discussed
in this paper and introduces a literature review. In Section 2, first of all a new
mathematical model of the Macpherson suspension is presented. Then the degree of
freedom of the system is determined. After that, by using the displacement matrices,
the kinematic relations of the system and different parameters like camber, caster
angles and also track width changes are derived. In the next section, the Lagrange
method is employed to analyze dynamic character. This is followed by the model
verification in which the Adams Model and road input and comparative outputs of
two models, i.e. the analytical and numerical models are represented. Conclusion
and acknowledge are presented in Sections 5 and 6, respectively.

2. Two-Dimensional Model

2.1. Geometrical Model

The 2D geometrical model is plotted from the Catia model of the car suspension
system (Fig. 2) provided to the authors by the platform design team.

For this purpose, first, the point O at which the control arm was connected
to the car frame was taken as origin, and then coordinates of other points were
calculated accordingly. At the point O, exist a revolute joint. The control arm
is connected to the knuckle via a ball joint. Strut assembly (including spring and
damper) is fixed to the knuckle. The steering rod is also connected to the knuckle
via a ball joint, which is of course invisible in the 2D model.

Since the plotted model is very close to the reality, it allows us to predict the
behavior of the suspension system precisely. Components of the drawn model (Fig.
3) are as follows:

1. Unsprung mass (M s)
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Figure 2 Catia model of Dacia Logan chassis

2. Control arm (OE )

3. Knuckle (CDE )

4. Strut (AB)

5. Wheels

Figure 3 McPherson suspension system left: analytical model right: Catia model

2.2. Determination of DOF

In order to analyze a kinematic and dynamic of a multibody system, first, one
should determine its degrees of freedom. For this purpose, Kutzbach method is
employed [14]

F = b (n− 1)−
j∑
i=1

(b− fi) . (1)

In this equation, F represents the DOF for closed system, b is the maximum DOF
for a link in 2D space (here is 3), n is the number of links, fi represents the DOF of
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the i-th joint, and j denotes the number of joints. MacPherson suspension system
is composed of 5 members including 4 links (A, BE, OE, and Ms) and the ground.
There are three revolute joints at O, E, and A, with a cylindrical joint for the
unsprung mass, each of which reduces 2 degree of freedom; further, one of the joints
is point-fixed and reduces the DOF by 3. Since the strut assembly is extendable,
which itself presents 1 DOF, it adds the system DOF by 1. Totally by using Eq.
(1) the model has 2 degree of freedom.

The two-DOF refer to the movement of the sprung mass and wheel along z-axis.
Therefore, locations of all points can be written in terms of these two variables.
The following assumptions were taken for this model.

1. Due to symmetry in a car, sprung mass will move only along z-axis.

2. All joints are ideal.

3. The values of spring, damper, and wheel stiffness behave linearly.

4. Masses of control arm and sequential arm are negligible.

2.3. Kinematics

Kinematic equations are derived by the displacement matrix [15]. It is one of the
most useful representation method of rigid-body rotations, based on directional
cosines [16]. Used in Fallah et al. [17], this method determines points coordinates
in multi-DOF systems. If a multi-DOF system rotates by the angle θ in 2D space,
the corresponding displacement matrix is calculated as follows:

R =

[
cos θ − sin θ
sin θ cos θ

]
(2)

If the system does not rotate, but rather is solely shifted along axes of coordinates,
the displacement matrix, d, is equal to:

d =

[
d11

d12

]
(3)

In case system rotates and shifts together, the corresponding displacement matrix
will be a combination of the above-mentioned matrixes, i.e.:

H =

[
R2×2 d2×1

f1×2 s1×1

]
(4)

Vertical road input is applied to the wheel at the point U and vibrates the wheel
vertically. These vibrations are transmitted from the wheel to the suspension sys-
tem and knuckle. The knuckle is connected to the control arm at point E. The
control arm rotates around the point O and converts the vertical movement to
a horizontal one. This moves the spindle horizontally and creates camber angle.
Vertical vibrations are further transmitted to the sprung mass via spindle.

The main points under consideration are the points B, D, and E. Each of
these points have two components in the two-dimensional space of Y − Z. The
input vibrations rotate the suspension system around x-axis by the angle Φ via the
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wheel and further generate two translational movements along y- and z-axes. The
displacement matrix is written as follows

[D] =

 a11 a12 d11

a21 a22 d22

0 0 1

 (5)

In this matrix, a is defined as below:

a11 = a22 = cos(ϕ)
a12 = −a21 = sin(ϕ)

(6)

d11 and d12 in the displacement matrix represent the shifts along y- and z-axes
respectively. In order to determine these two parameters, one can use the following
method:  YC

ZC
1

 =

 a11 a12 d11

a21 a22 d22

0 0 1

 YC0

ZC0

1

 (7)

As a result:
d11 = YU − (a11YU0 + a12ZU0)
d12 = ZU − (a21YU0 + a22ZU0)

(8)

where ZU and YU are equal to:

ZU = ZU0 + zu , (9)

YU = YU0 + yu . (10)

Therefore, the displacement matrix can be calculated as follows:

[D] =

 a11 a12 YU − (a11YU0 + a12ZU0)
a21 a22 ZU − (a21YU0 + a22ZU0)
0 0 1

 (11)

One can obtain the locations of points including B, D, E (see Fig. 3) as follows: YB YD YE
ZB ZD ZE
1 1 1

 = [D]×

 YB0 YD0 YE0

ZB0 ZD0 ZE0

1 1 1

 (12)

Thus, the locations may be derived as:

YB = a11YB0 + a12ZB0 + YU − (a11YU0 + a12ZU0)
ZB = a12YB0 + a22ZB0 + ZU − (a21YU0 + a22ZU0)
YD = a11YD0 + a12ZD0 + YU − (a11YU0 + a12ZU0)
ZD = a21YD0 + a22ZD0 + ZU − (a21YU0 − a22ZU0)
YE = a11YE0 + a12ZE0 + YU − (a11YU0 + a12ZU0)
ZE = a21YE0 + a22ZE0 + ZU − (a21YU0 + a22ZU0)

(13)

Since the angle Φ is less than 6o, the equations can be linearised with following
assumptions:

a11 = a22 = cos (ϕ) ∼= 1
a12 = −a21 = sin (ϕ) ∼= ϕ

Accordingly, in Eq. (13) there will be 6 equations with 9 unknowns including
(Y B,ZB), (Y C,ZC), (Y D,ZD), (Y E,ZE), and Φ.
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2.4. Camber

Camber angle is the angle between the wheel plane and the vertical line. It is
positive when the top of the wheel leans outward (Fig. 4). This definition of
sign is only applicable for axles with two wheels. For instance, it is not applicable
for motorcycles. Camber generates lateral forces and gives tire wear. Camber
force (also called camber thrust) is the lateral force caused by the cambering of
a wheel [18].

The camber angle may be made by either of two causes: 1) camber by roll,
and 2) camber by bump. A change in the angle of the control arm develops some
camber angle, enhancing the tire-ground contact. It prevents the car from rollover.
As such, this angle plays an important role in handling of car.

Figure 4 Camber angle [19]

In order to calculate the camber angle, it is assumed that sprung mass is constant
and the wheels displaced vertically. Since the whole system rotates by Φ, the camber
angle is calculated as follows:

ϕ =
YB − YA
ZB − ZA

(14)

In this suspension system model, initial value of the camber angle is 0 and the link
AB is normal to the ground. According to the assumptions, YA does not change.
According to Eq. (13) the parameters YB and ZB are functions of the angle ϕ, zu,
and yu. As the system is a 2-DOF, all of the variables are functions of zs and zu.
One can rewrite yu in terms of these two variables. For this purpose, at first the
coordinates of YE should be calculated.

yu = YE − YE0 + φ (ZU0 − ZE0) (15)

By considering the link OE:

YE =

√
(LOE)

2−Z2
E (16)

Combining Eq. (13), (15), and (16) and substituting ZE gives:

φ =
YB0+φ(ZB0−ZU0)+

√
L2

OE−(φ(YU0−YE0+ZE0+zu))2−YE0+φ(ZU0−ZE0)−YA

φ(YU0−YB0)+(ZB0+zu)−ZA0−zs (17)
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In order to simplify the relations, the following parameters are assumed:

a = (YU0 − YB0)

b = (zu − ZA0 − zs + ZE0)

c = (YB0 − YE0 − YA)

d = (YU0 − YE0)

e = (ZE0 + zu)

f =

√
(−2cb+ 2ed)

2 − 4 (b2 + d2) (c2 + e2 − L2
FE)

Substituting these assumptions in Equation (17) gives:

aϕ2 +bϕ− c =

√
(LOE)

2 − (dϕ+ e)
2

(18)

Due to small value of the angle, the second-order of ϕ can be neglected. By squaring
the equation:

(bϕ− c)2
= L2

FE − (dϕ+ e)
2

(19)

b2ϕ2 − 2bcϕ+ c2 = L2
FE − d2ϕ2 − 2dϕ− e2 (20)

After reordering:

ϕ2
(
b2 + d2

)
+ ϕ(−2cb+ 2de) +

(
c2 + e2 + L2

FE

)
(21)

ϕ =
(2de− 2cb) +

√
(−2cb+ 2ed)

2 − 4 (b2 + d2) (c2 + e2 + L2
FE)

2(b2 + d2)
(22)

This equation gives the camber angle as a function of zs and zu.

2.5. Track Changes

As stated earlier, when tire moves vertically respect to the body, track will change.
On the real vehicle, the displacements of the tire contact patch relative to the road
wheel would also result due to the effects of tire distortion [20].

yu = YE − YE0 + ϕ (ZU0 − ZE0) (23)

YE =
√
L2
OE − Z2

E (24)

ZE = ϕ (YU0 − YE0) + (ZE0 + zu) (25)

yu =

√
L2
OE − (ϕ (YU0 − YE0) + (ZE0 + zu))

2 − YE0 + ϕ (ZU0 − ZE0) (26)

The angle θ can be also calculated as a function of camber angle.

θ = sin−1 ZE0 − ZO
LOE

(27)

θ = sin−1 ϕ (YU0 − YE0) + (ZE0 + zu)− zs
LOE

(28)
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2.6. Kingpin

According to ISO 8855, the kingpin inclination is the angle σ which arises between
the steering axis and a vertical to the road [21]

σ =
YD − YA
ZD − ZA

(29)

2.7. Caster

In vehicles, bikes, and bicycles, caster angle is defined as the angle between the
steer axis and the vertical line in the lateral plane (X − Y ). This angle is between
an auxiliary line passing through the center of the wheel and the upper ball joint,
in one side, and a horizontal line, on the other side. Looking the car from right, if
the steering axis is in the right of the vertical line, the caster angle is positive, and
it is negative if the steering axis is in the left of the vertical axis.

Caster variation is not generally desirable, but is used deliberately in some cases,
for example to offset the effect of body pitch in braking. The caster angle and axis
offset (the kingpin axis to wheel center separation in side view) give the caster trail,
which, in conjunction with the tire pneumatic trail, is very important in giving
the steering a suitable feel, and also has a significant effect on directional stability
because of steering compliance [22].

Negative caster aids in centering the steering wheel after a turn and makes the
front tires straighten quicker. Most street cars are made with 4 − 6 deg negative
caster. Negative caster tends to straighten the wheel when the vehicle is travelling
forward, as a result is used to enhance straight-line stability

ϕ =
XB −XA

ZB − ZA
(30)

2.8. Dynamics

In this section, dynamical analysis of the model is presented. When the car moves on
a bumpy road, a force is applied by the road to the tires. This force is transmitted,
via the arms of the suspension system, to the unsprung mass and passengers. There
are numerous methods to calculate the acceleration applied to the passengers; in
the present research, Lagrange equation is used for this purpose.

Lagrange’s equation is a second-order partial differential equation that solutions
are the functions for which a given functional is stationary [23].

Lagrange method has been applied to analyze many dynamic systems [24]. In
this method, at first, kinetic force, T , potential force, V and damping force, D,
should be calculated as follows:

T =
1

2
msz

′2
s +

1

2
muz

′2
u +

1

2
muy

′2
u +

1

2
Iuϕ

′2 +
1

2
IOEθ

′2 (31)

V =
1

2
KS ∆L2 +

1

2
KT (zu − zr)2

+
1

2
KTY YU

2 (32)

D =
1

2
BS∆L̇2 (33)
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In Eq. (31), Ms and Mu are sprung and unsprung masses, respectively, z′s and z′u
represent vertical velocities of the sprung and unsprung masses. Y ′u is horizontal
velocity of the unsprung mass, and Iu and IOE are moments of inertia of strut and
control arm around x-axis. In Eq. (32), Ks refers to the stiffness of the primary
spring, ∆L is the length change of the strut, KT is the stiffness of the car tire along
vertical direction, and KTY represents the spring stiffness in horizontal direction,
with zr denoting road input. Damping coefficient of the damper in Eq. (33) is shown
by Bs. Lagrangian is defined as the difference of kinetic and potential energies.

L = T − V (34)

Then, one should differentiate respect to time and also respect to independent
variables zs and zu as follows:

L =
1

2
msz

′2
s +

1

2
muz

′2
u +

1

2
muy

′2
u +

1

2
Iuϕ

′2 +
1

2
IOEθ

′2

−1

2
KS∆L2 − 1

2
KT (zu − zr)2 − 1

2
KTY y

2
u (35)

Then, one should differentiate respect to time and also respect to independent
variables zs and zu as follows:

d

dt

[
∂L

∂ż′s

]
−
[
∂L

∂zs

]
+

[
∂D

∂żs

]
= 0 (36)

d

dt

[
∂L

∂ż′u

]
−
[
∂L

∂zu

]
+

[
∂D

∂żu

]
= 0 (37)

by expanding Eqs. (36) and (37):

msz
′′
s +mu

(
y′′u

∂y′u
∂z′s

+ y′u
d
dt

(
∂y′u
∂z′s

))
+ Iu

(
ϕ′′ ∂ϕ

′

∂z′s
+ ϕ′ ddt

(
∂ϕ′

∂z′s

))
+

IOE

(
θ′′ ∂θ

′

∂z′s
+ θ′ ddt

(
∂θ′

∂z′s

))
−muy

′
u − Iuϕ′

∂ϕ′

∂zs
− IOEθ′ ∂θ

′

∂zs

+KS∆L∂∆L
∂zs

+KTY yu
∂yu
∂zs

= 0

muz
′′
u +mu

(
y′′u

∂y′u
∂z′u

+ y′u
d
dt

(
∂y′u
∂z′u

))
+ Iu

(
ϕ′′ ∂ϕ

′

∂z′u
+ ϕ′ ddt

(
∂ϕ′

∂z′u

))
+

IOE

(
θ′′ ∂θ

′

∂z′u
+ θ′ ddt

(
∂θ′

∂z′u

))
−muy

′
u
∂y′u
∂zu
− Iuϕ′ ∂ϕ

′

∂zu
− IOEθ′ ∂θ

′

∂zu
+

KT (zu − zr) +KS∆L∂∆L
∂zu

+KTY yu
∂yu
∂zu

= 0

Due to complicated relations, just some typical resulted equations have been pre-
sented here. Strut length, including spring and damper, shall be calculated in the
Lagrange equations.

∆L = L− L0 (38)

∆L =

√
(ZA − ZB)

2
+ (YA − YB)

2 −
√

(ZA0 − ZB0)
2

+ (YA0 − YB0)
2

(39)

and its derivative is given by:

∆L̇ = 2 (ZA − ZB) (żs − żu) + 2 (YA − YB) (−ϕ̇ZB0 − yu + ϕ̇ZU0) (40)
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Derivative of the camber angle respect to time:

φ =

{
2(b2 + d2) [2de′ − 2cb′+[

(−2cb+ 2ed)(−2cb′ + 2de′)− 4(2bb′(c2 + e2 − L2
FE)− 4(b2 + d2)(2ee′)

]
/f
]

(41)

−2bb′(2de− 2cb+ f)

}
:

{
4
(
b2 + d2

)2 }
The second derivative of the horizontal displacement of the unsprung mass with
respect to time:

y′′u = − [φ′′(φ(YU0−YE0)+(ZE0+zu))+φ̇′2(YU0−YE0)]
√
L2

OE−(φ(YU0−YE0)+(ZE0+zu))2

2[L2
OE−φ2(YU0−YE0+ZE0+zu)2]

+φ′′(ZU0 − ZE0)

After solving above equations and differentiate of different parameters respect to
time, zs and zu, one can obtain the acceleration applied to the passengers.

The above equations were coded in MATLAB. This programing software has
useful functions for solving dynamic and kinematic equations. Therefore, MATLAB
and Simulink are frequently applied to analyze this type of systems [25]. In order
to solve these differential equations, we used ODE45 solver. Computation time was
set to 10 s and the solution interval was divided into 500 steps.

3. Model Verification

3.1. Adams Model

For verifying the prepared analytical model, a suspension system with the same
specifications was modeled in Adams/Car software, designed to analyse different
parts of a car (e.g. suspension system), this software has been applied in numerous
researches [26]. The system has been also modelled in Adams to simulate the same
status for verification.

As it was explained in Sec. 1, dimensions of the suspension system were acquired
from the corresponding Catia file. Coordinates of the points are presented in Tab. 1.
Table 2 declares the value of non-geometrical suspension parameters.

Table 1 Coordination of the hard points

Hard points X [mm] Y [mm] Z [mm]

O 0 0 0

A 35 200 650

B 5 200 225

C -15 336 176

D -35 336 16

E -31 322 -40

U -35 400 110
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Table 2 Non-geometrical parameters value

Parameter Value parameter value

Ms [kg] 280 Mu [kg] 50

Ks [N/m] 26185 Bs [Ns/m] 2166

KT [N/m] 200000 KTY [N/m] 180000

IOE [kg m2] 1 Iu 10

Figure 5 MacPherson Suspension system in Adams/Car

3.2. Kinematic Analysis

In order to analyse kinematic parameters of the suspension system, the wheel center
was displaced by −80 to +80 mm. In this test, sprung mass of the car was assumed
to be constant. The results are presented in Figs. 6 to 8.

Figure 6 Camber angle vs. wheel travel

As can be seen, the results of the 2D model (coded in MATLAB) and 3D model
(modeled in Adams) are so close to one another. The existing small deviations
might be attributed to linearization which was explained in Sec. 2.
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Figure 7 Caster angle vs. wheel travel

Figure 8 Track changes vs. wheel travel

3.3. Dynamic Analysis

To dynamic analyse, a 5cm step road input was applied to the both models (Fig. 9).
The equation used to produce this plot in Adams/car is as follows:

Figure 9 Road profile

zr = hav sin(time, 2, 0, 2.01, 50) + hav sin(time, 7, 0, 7.01,−50) (42)

Simulation result is shown in Fig. 10.
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Figure 10 Sprung mass vertical displacement respect to time

4. Conclusions

McPherson suspension system is a frequently applied suspension system for small
and mid-sized cars. Since this system exhibits non-linear behaviours, one should use
appropriate models to analyse its ride and handling. Most of the existing literature
on suspension systems have simulated the strut and tire only. Even though these
models have been able to well analyse the ride, but they failed to consider the
car handling due to not accounting for the geometry of the suspension system. In
this paper, MacPherson suspension system of Dacia Logan was two-dimensionally
modelled in full-size. This 2D model not only calculated the vertical acceleration
applied to the car body, but also was capable of analysing many suspension system
parameters such as caster angle and track which are related to the car handling. In
order to validate the model, it was modelled in Adams/Car software. Two different
tests were conducted on both models and the results were compared to one another.
In the first test, in order to analyse kinematic parameters, center of the car tire was
vertically displaced by −80 to +80 mm. In the second test, a 5 cm-step road
input was applied to the tire. The differences between the outputs if analytical and
3D model in both tests was less than 5%. This model can be used to undertake
frequency simulation, ride comfort and car safety analysis.
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